Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 711
1.
Bol. latinoam. Caribe plantas med. aromát ; 23(3): 382-389, mayo 2024. ilus, tab, graf
Article En | LILACS | ID: biblio-1538151

The extraction of geraniol from palmarosa oil using hydrotropic solvents was investigated. Palmarosa oil possesses an appealing rose aroma and properties like anti - inflammatory, antifungal, and antioxidant due to the presence of geraniol. The extraction of geraniol from palmarosa oil by using distillation methods like steam dis tillation and fractional distillation was a laborious process. So hydrotropes were tried for extraction. The geraniol yield and purity depend on parameters like concentration of hydrotrope, solvent volume ratio, and time period. Using the Box Benkhem Desig n (BBD), the extraction process was optimized. One of the major advantages of using hydrotropic solvents is that they were classified as green solvents, and recovery of solvents is also possible. To reduce the extraction time probe sonication is carried ou t. Different hydrotropic solvents with probe sonication are done on palmarosa oil by altering various process parameters to study the separation, yield, and purity.


Se investigó la extracción de geraniol del aceite de palmarosa utilizando solventes hidrotrópicos. El aceite de palmarosa posee un atractivo aroma a rosa y propiedades antiinflamatorias, antifúngicas y antioxidantes debido a la pr esencia de geraniol. La extracción de geraniol del aceite de palmarosa mediante métodos de destilación como la destilación por vapor y la destilación fraccionada ha sido un proceso laborioso. Por lo tanto, se probaron los hidrotropos para la extracción. El rendimiento y la pureza del geraniol dependen de parámetros como la concentración del hidrotropo, la relación de volumen del solvente y el período de tiempo. Se optimizó el proceso de extracción usando el diseño Box Benkhem (BBD). Una de las principales v entajas de usar solventes hidrotrópicos es que se clasifican como solventes verdes y también es posible recuperar los solventes. Para reducir el tiempo de extracción, se lleva a cabo una sonda de ultrasonido. Se realizan diferentes solventes hidrotropos co n sonda de ultrasonido en el aceite de palmarosa alterando varios parámetros del proceso para estudiar la separación, el rendimiento y la pureza.


Cymbopogon/chemistry , Acyclic Monoterpenes/pharmacology , Acyclic Monoterpenes/chemistry , Plant Oils/pharmacology , Plant Oils/chemistry
2.
Lett Appl Microbiol ; 77(5)2024 May 03.
Article En | MEDLINE | ID: mdl-38653726

Citrus canker is a disease caused by the gram-negative bacterium Xanthomonas citri subp. citri (X. citri), which affects all commercially important varieties of citrus and can lead to significant losses. Fruit sanitization with products such as chlorine-based ones can reduce the spread of the disease. While effective, their use raises concerns about safety of the workers. This work proposes essential oils (EOs) as viable alternatives for fruit sanitization. EOs from Cymbopogon species were evaluated as to their antibacterial activity, their effect on the bacterial membrane, and their ability to sanitize citrus fruit. The in vitro assays revealed that the EOs from C. schoenanthus and C. citratus had a lower bactericidal concentration at 312 mg L-1, followed by 625 mg L-1 for C. martini and C. winterianus. Microscopy assay revealed that the bacterial cell membranes were disrupted after 15 min of contact with all EOs tested. Regarding the sanitizing potential, the EOs with higher proportions of geraniol were more effective in sanitizing acid limes. Fruit treated with C. shoenanthus and C. martini showed a reduction of ∼68% in the recovery of viable bacterial cells. Therefore, these EOs can be used as viable natural alternatives in citrus fruit disinfection.


Anti-Bacterial Agents , Citrus , Cymbopogon , Oils, Volatile , Plant Diseases , Xanthomonas , Cymbopogon/chemistry , Oils, Volatile/pharmacology , Xanthomonas/drug effects , Citrus/microbiology , Plant Diseases/microbiology , Plant Diseases/prevention & control , Anti-Bacterial Agents/pharmacology , Fruit/microbiology , Microbial Sensitivity Tests
3.
Sci Rep ; 14(1): 9195, 2024 04 22.
Article En | MEDLINE | ID: mdl-38649707

The development of novel antioxidant compounds with high efficacy and low toxicity is of utmost importance in the medicine and food industries. Moreover, with increasing concerns about the safety of synthetic components, scientists are beginning to search for natural sources of antioxidants, especially essential oils (EOs). The combination of EOs may produce a higher scavenging profile than a single oil due to better chemical diversity in the mixture. Therefore, this exploratory study aims to assess the antioxidant activity of three EOs extracted from Cymbopogon flexuosus, Carum carvi, and Acorus calamus in individual and combined forms using the augmented-simplex design methodology. The in vitro antioxidant assays were performed using DPPH and ABTS radical scavenging approaches. The results of the Chromatography Gas-Mass spectrometry (CG-MS) characterization showed that citral (29.62%) and niral (27.32%) are the main components for C. flexuosus, while D-carvone (62.09%) and D-limonene (29.58%) are the most dominant substances in C. carvi. By contrast, ß-asarone (69.11%) was identified as the principal component of A. calamus (30.2%). The individual EO exhibits variable scavenging activities against ABTS and DPPH radicals. These effects were enhanced through the mixture of the three EOs. The optimal antioxidant formulation consisted of 20% C. flexuosus, 53% C. carvi, and 27% A. calamus for DPPHIC50. Whereas 17% C. flexuosus, 43% C. carvi, and 40% A. calamus is the best combination leading to the highest scavenging activity against ABTS radical. These findings suggest a new research avenue for EOs combinations to be developed as novel natural formulations useful in food and biopharmaceutical products.


Acorus , Antioxidants , Carum , Cymbopogon , Oils, Volatile , Plant Extracts , Cymbopogon/chemistry , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Acorus/chemistry , Carum/chemistry , Gas Chromatography-Mass Spectrometry , Biphenyl Compounds/antagonists & inhibitors , Biphenyl Compounds/chemistry , Free Radical Scavengers/chemistry , Free Radical Scavengers/pharmacology
4.
Curr Med Sci ; 44(2): 450-461, 2024 Apr.
Article En | MEDLINE | ID: mdl-38639827

OBJECTIVE: Cymbopogon citratus (DC.) Stapf is a medicinal and edible herb that is widely used for the treatment of gastric, nervous and hypertensive disorders. In this study, we investigated the cardioprotective effects and mechanisms of the essential oil, the main active ingredient of Cymbopogon citratus, on isoproterenol (ISO)-induced cardiomyocyte hypertrophy. METHODS: The compositions of Cymbopogon citratus essential oil (CCEO) were determined by gas chromatography-mass spectrometry. Cardiomyocytes were pretreated with 16.9 µg/L CCEO for 1 h followed by 10 µmol/L ISO for 24 h. Cardiac hypertrophy-related indicators and NLRP3 inflammasome expression were evaluated. Subsequently, transcriptome sequencing (RNA-seq) and target verification were used to further explore the underlying mechanism. RESULTS: Our results showed that the CCEO mainly included citronellal (45.66%), geraniol (23.32%), and citronellol (10.37%). CCEO inhibited ISO-induced increases in cell surface area and protein content, as well as the upregulation of fetal gene expression. Moreover, CCEO inhibited ISO-induced NLRP3 inflammasome expression, as evidenced by decreased lactate dehydrogenase content and downregulated mRNA levels of NLRP3, ASC, CASP1, GSDMD, and IL-1ß, as well as reduced protein levels of NLRP3, ASC, pro-caspase-1, caspase-1 (p20), GSDMD-FL, GSDMD-N, and pro-IL-1ß. The RNA-seq results showed that CCEO inhibited the increase in the mRNA levels of 26 oxidative phosphorylation complex subunits in ISO-treated cardiomyocytes. Our further experiments confirmed that CCEO suppressed ISO-induced upregulation of mt-Nd1, Sdhd, mt-Cytb, Uqcrq, and mt-Atp6 but had no obvious effects on mt-Col expression. CONCLUSION: CCEO inhibits ISO-induced cardiomyocyte hypertrophy through the suppression of NLRP3 inflammasome expression and the regulation of several oxidative phosphorylation complex subunits.


Cymbopogon , Oils, Volatile , Oils, Volatile/pharmacology , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein , Cymbopogon/chemistry , Cymbopogon/metabolism , Isoproterenol , Myocytes, Cardiac/metabolism , Oxidative Phosphorylation , RNA, Messenger/metabolism , Hypertrophy/chemically induced , Hypertrophy/drug therapy , Hypertrophy/metabolism
5.
Urolithiasis ; 52(1): 52, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38564033

Urolithiasis is a prevalent urological disorder that contributes significantly to global morbidity. This study aimed to assess the anti-urolithic effects of Cymbopogon proximus (Halfa Bar) and Petroselinum crispum (parsley) seed ethanolic extract /Gum Arabic (GA) emulsion, and its nanogel form against ethylene glycol (EG) and ammonium chloride (AC)-induced experimental urolithiasis in rats. Rats were divided into four groups: group 1 served as the normal control, group 2 received EG with AC in drinking water for 14 days to induce urolithiasis, groups 3 and 4 were orally administered emulsion (600 mg/kg/day) and nanogel emulsion (600 mg/kg/day) for 7 days, followed by co-administration with EG and AC in drinking water for 14 days. Urolithiatic rats exhibited a significant decrease in urinary excreted magnesium, and non-enzymic antioxidant glutathione and catalase activity. Moreover, they showed an increase in oxalate crystal numbers and various urolithiasis promoters, including excreted calcium, oxalate, phosphate, and uric acid. Renal function parameters and lipid peroxidation were intensified. Treatment with either emulsion or nanogel emulsion significantly elevated urolithiasis inhibitors, excreted magnesium, glutathione levels, and catalase activities. Reduced oxalate crystal numbers, urolithiasis promoters' excretion, renal function parameters, and lipid peroxidation while improving histopathological changes. Moreover, it decreased renal crystal deposition score and the expression of Tumer necrosis factor-α (TNF-α) and cleaved caspase-3. Notably, nanogel emulsion showed superior effects compared to the emulsion. Cymbopogon proximus (C. proximus) and Petroselinum crispum (P. crispum) seed ethanolic extracts/GA nanogel emulsion demonstrated protective effects against ethylene glycol induced renal stones by mitigating kidney dysfunction, oxalate crystal formation, and histological alterations.


Cymbopogon , Drinking Water , Kidney Calculi , Polyethylene Glycols , Polyethyleneimine , Urolithiasis , Animals , Rats , Petroselinum , Ammonium Chloride , Gum Arabic , Emulsions , Catalase , Magnesium , Nanogels , Urolithiasis/chemically induced , Urolithiasis/drug therapy , Urolithiasis/prevention & control , Seeds , Antioxidants/therapeutic use , Ethanol , Glutathione , Oxalates , Ethylene Glycols , Plant Extracts/pharmacology , Plant Extracts/therapeutic use
6.
J Ethnopharmacol ; 330: 118181, 2024 Aug 10.
Article En | MEDLINE | ID: mdl-38608798

ETHNOPHARMACOLOGICAL RELEVANCE: Cymbopogon (Poaceae) plants have been used for various purposes by many indigenous peoples in all continents. In particular, almost all species in the genus have traditionally been used as folk medicine to treat ailments. Traditional application records indicated that Cymbopogon might be used extensively to treat cold, dizziness, headache, loss of appetite, abdominal pain, rheumatism, diarrhea, whole grass for cold, sore throat, tracheitis and others. AIMS OF THE REVIEW: Despite several research confirmed that Cymbopogon includes a range of active components, no review has been undertaken to consolidate information on its traditional uses, phytochemistry, pharmacology, and/or quality control. Thus this article aims to update a comprehensive review about the traditional uses, phytochemistry, pharmacology, cultivation techniques, economic benefits, trade, threats, and future conservation implications of Cymbopogon species. It may provide informative data for future development and further investigation of this important plant group. MATERIALS AND METHODS: Traditional medicinal books and ethnomedicinal publications related to Cymbopogon from 1992 to 2023 were collated to investigate its ethnobotanical, phytochemical and pharmacological information. The online databases including Google Scholar, SciFinder, Web of Science, Scopus, Springer Link, PubMed, Wiley, China National Knowledge Infrastructure (CNKI), Baidu Scholar, and WanFang Database were screened. RESULTS: Cymbopogon (Gramineae or Poaceae) plants have been grown worldwide. Traditional Chinese medicine and other medicinal systems believes that Cymbopogon has the effect of relieve a cough, analgesia, treating dizziness, traumatic injury and can relieve abdominal pain. A total of 153 compounds, including flavonoids, terpenoids, fatty acid and other compounds were isolated or identified from Cymbopogon species by phytochemical studies. The extracts or compounds from Cymbopogon have exhibited numerous biological activities such as antibacterial, antiinflammatory, antiviral, antineoplastic, antiarrhythmic, antidiabetic and other activities. The rich contents of citronellal, citronellol and geraniol found in Cymbopogon also provide significant nutritional benefits. CONCLUSION: Based on their traditional uses, phytochemicals, and pharmacological activities, Cymbopogon plants are potential medicinal and edible resources with diverse pharmacological effects. Due to various advantages of this group, they possess huge application potential in food and pharmaceutical industries, and animal husbandry. Among them, citronella is very important in terms of economic development. Further comprehensive research to evaluate the medicinal properties of Cymbopogon species will be necessary for future development.


Cymbopogon , Ethnobotany , Ethnopharmacology , Medicine, Traditional , Phytochemicals , Phytotherapy , Cymbopogon/chemistry , Humans , Phytochemicals/pharmacology , Phytochemicals/analysis , Phytochemicals/chemistry , Animals , Medicine, Traditional/methods , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Extracts/therapeutic use , Plants, Medicinal/chemistry
7.
Trop Anim Health Prod ; 56(2): 97, 2024 Mar 08.
Article En | MEDLINE | ID: mdl-38453787

Phytonutrients (PTN) namely saponins (SP) and condensed tannins (CT) have been demonstrated to assess the effect of rumen fermentation and methane mitigation. Phytonutrient pellet containing mangosteen, rambutan, and banana flower (MARABAC) and lemongrass including PTN, hence these plant-phytonutrients supplementation could be an alternative plant with a positive effect on rumen fermentation. The aim of this experiment was to evaluate the effect of supplementation of MARABAC and lemongrass (Cymbopogon citratus) powder on in vitro fermentation modulation and the ability to mitigate methane production. The treatments were arranged according to a 3 × 3 Factorial arrangement in a completely randomized design. The two experimental factors consisted of MARABAC pellet levels (0%, 1%, and 2% of the total substrate) and lemongrass supplementation levels (0%, 1%, and 2% of the total substrate). The results of this study revealed that supplementation with MARABAC pellet and lemongrass powder significantly improved gas production kinetics (P < 0.01) and rumen fermentation end-products especially the propionate production (P < 0.01). While rumen methane production was subsequently reduced by both factors. Additionally, the in vitro dry matter degradability (IVDMD) and organic matter degradability (IVOMD) were greatly improved (P < 0.05) by the respective treatments. MARABAC pellet and lemongrass powder combination showed effective methane mitigation by enhancing rumen fermentation end-products especially the propionate concentration and both the IVDMD and IVOMD, while mitigated methane production. The combined level of both sources at 2% MARABAC pellet and 2% lemongrass powder of total substrates offered the best results. Therefore, MARABAC pellet and lemongrass powder supplementation could be used as an alternative source of phytonutrient in dietary ruminant.


Cymbopogon , Dietary Supplements , Animals , Fermentation , In Vitro Techniques/veterinary , Methane/metabolism , Nutrients , Phytochemicals/metabolism , Powders/metabolism , Propionates/metabolism , Rumen/metabolism
8.
PLoS One ; 19(2): e0299502, 2024.
Article En | MEDLINE | ID: mdl-38421961

Essential oil (EO) distillation units, which are commonly installed on farms, have difficultly accessing knowledge centers. The apparent simplicity of the process hides unwanted losses and deviations that go undetected and, therefore, not corrected. This article proposes improvements to the process that are based on "4.0" technologies in order to detect and correct two important deficiencies, with an impact on the yield, quality and environmental performance. The first deficiency comprises the steam channels that are formed through green mass (channeling), are well known and are considered normal by EO producers. Without detection and correction, this negatively affects the extraction results. The second is the lack of technology that is able to automatically determine the extraction endpoint. Smart sensing, control, self-configuration and the dynamic determination of improved process parameters make up a set of actions undertaken by a smart extraction plant (50-liter capacity). Nineteen experiments using lemongrass (Cymbopogon citratus) exhibited remarkable 24% and 10% improvements in the yield and quality, respectively. Energy consumption and a more than 50% reduction in the processing complete the set of results achieved. In addition to manufacturing costs and the utilization of capacity, better sustainability indicators are positive consequences of this technological updating.


Cymbopogon , Oils, Volatile , Commerce , Distillation , Technology
9.
Biofouling ; 40(1): 26-39, 2024 Jan.
Article En | MEDLINE | ID: mdl-38286789

Chronic rhinosinusitis (CRS) is long-term inflammation of the sinuses that can be caused by infection due to antibiotic-resistant bacteria. Biofilm developed by microbes is postulated to cause antibiotic treatment failure. Thus, the anti-biofilm activities of seven Thai herbal essential oils (EOs) against antibiotic-resistant bacteria isolated from CRS patients was investigated. Lemongrass (Cymbopogon citratus L.) EO showed the most effective antibiofilm activity against Klebsiella pneumoniae, Pseudomonas aeruginosa and Staphylococcus epidermidis grown as biofilm. GC-MS analysis found that myrcene was the major bioactive compound. Pretreatment with lemongrass EO significantly inhibited biofilm formation of all bacterial strains in more than 50% of cases. Furthermore, confocal microscopy analysis revealed the biofilm-disrupting activity of lemongrass EO against the biofilm matrix of all these bacterial species and also increased P. aeruginosa swarming motility with no toxicity to human cells. These results suggest that lemongrass EO has promising clinical applications as an anti-biofilm agent for CRS patients.


Cymbopogon , Oils, Volatile , Rhinosinusitis , Humans , Anti-Bacterial Agents/pharmacology , Oils, Volatile/pharmacology , Biofilms , Microbial Sensitivity Tests , Bacteria
10.
Foodborne Pathog Dis ; 21(4): 275-277, 2024 Apr.
Article En | MEDLINE | ID: mdl-38227805

The aim of this study was to evaluate the antibacterial activity of Cymbopogon citratus essential oil against bacteria isolated from the oral cavity of dogs and applied directly to artificially contaminated feed. The commercial dry dog feed received the inoculum of the bacteria prevalent in the oral cavity of the dogs where C. citratus was deposited in the feed by spray. In total, 42 isolates were obtained, 38 Gram-positive and 4 Gram-negative. Staphylococcus spp. was the most prevalent bacteria in the oral cavity of dogs (76.2%). The isolates showed high levels of resistance to different antimicrobials. The minimum inhibitory concentration capable of inhibiting oral bacteria was 0.38 mg/mL. C. citratus essential oil showed positive results with a significant bacterial reduction when applied to feed, signaling the need for further studies to enable its use in the control of pathogens transmitted by animal feed.


Anti-Infective Agents , Cymbopogon , Oils, Volatile , Dogs , Animals , Oils, Volatile/pharmacology , Staphylococcus , Mouth
11.
BMC Complement Med Ther ; 24(1): 27, 2024 Jan 09.
Article En | MEDLINE | ID: mdl-38195607

BACKGROUND: Plants have historically been a rich source of medicinal compounds, with many modern pharmaceuticals derived from botanical origins. In contemporary healthcare, there is a resurgence in utilizing botanical substances as recognized medicinal agents. This study delved into understanding the phytochemical makeup and the multifaceted biological activities of an aqueous extract from Cymbopogon citratus (C. citratus). The investigated activities were its effect on AMPA receptors, antioxidant capacity, anti-lipase, anti-α-amylase actions, cytotoxicity, and antimicrobial properties. METHODS: The extract of C. citratus received a comprehensive investigation, which included the study of its phytochemical composition, assessment of its antioxidant and anti-lipase properties, evaluation of its capacity to inhibit α-amylase, analysis of its impact on cell viability, and assessment of its antimicrobial activity. The approaches are used to clarify the complex physiological and biochemical characteristics. RESULTS: The results were compelling; receptor kinetics had a marked impact, notably on the GluA2 subunit. Regarding its medicinal potential, the extract demonstrated potent antioxidant and anti-diabetic activities with IC50 values of 15.13 and 101.14 µg/mL, respectively. Additionally, it displayed significant inhibitory effects on the lipase enzyme and showed cytotoxicity against the Hep3B cancer cell line, with IC50 values of 144.35 and 148.37 µg/mL. In contrast, its effects on the normal LX-2 cell line were minimal, indicating selectivity. CONCLUSION: The aqueous extract of C. citratus shows promising therapeutic properties. The findings advocate for further research into its compounds for potential isolation, purification, and in-depth pharmacological studies, especially in areas like nervous system disorders, diabetes, obesity, and combating oxidative stress.


Anti-Infective Agents , Cymbopogon , Humans , Antioxidants/pharmacology , Arabs , Lipase , Phytochemicals/pharmacology , Anti-Infective Agents/pharmacology
12.
Nat Prod Res ; 38(4): 667-672, 2024.
Article En | MEDLINE | ID: mdl-36855252

Tomato is one of the most produced and consumed fruits in the world. However, it is a crop that faces several phytosanitary problems, such as fusarium wilt, caused by Fusarium oxysporum. Thus, this study aimed to evaluate citronella and melaleuca essential oils in vitro potential in the fungus F. oxysporum management. The chemical identification of the components in the essential oils was performed by gas chromatography with flame ionization and mass spectrometer detectors. The IC50 and IC90 were determined by linear regression and the percentage of inhibition of the fungus by analysis of variance. The major compounds in citronella essential oil were citronellal, Geraniol, and citronellol; in melaleuca (tea tree) oil were terpinen-4-ol and α-terpinene. Both oils promoted more significant inhibition at concentrations of 1.5 and 2.5 µL/mL, besides not presenting significant differences with commercial fungicides, confirming the high potential for using this control method in agriculture.


Cymbopogon , Fungicides, Industrial , Fusarium , Lamiaceae , Oils, Volatile , Solanum lycopersicum , Tea Tree Oil , Fungicides, Industrial/pharmacology , Trees , Fungi , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Tea , Plant Diseases/microbiology
13.
J Biomol Struct Dyn ; 42(1): 101-118, 2024.
Article En | MEDLINE | ID: mdl-36974933

The emergence of varying levels of resistance to currently available antimalarial drugs significantly threatens global health. This factor heightens the urgency to explore bioactive compounds from natural products with a view to discovering and developing newer antimalarial drugs with novel mode of actions. Therefore, we evaluated the inhibitory effects of sixteen phytocompounds from Cymbopogon citratus leaf extract against Plasmodium falciparum drug targets such as P. falciparum circumsporozoite protein (PfCSP), P. falciparum merozoite surface protein 1 (PfMSP1) and P. falciparum erythrocyte membrane protein 1 (PfEMP1). In silico approaches including molecular docking, pharmacophore modeling and 3D-QSAR were adopted to analyze the inhibitory activity of the compounds under consideration. The molecular docking results indicated that a compound swertiajaponin from C. citratus exhibited a higher binding affinity (-7.8 kcal/mol) to PfMSP1 as against the standard artesunate-amodiaquine (-6.6 kcal/mol). Swertiajaponin also formed strong hydrogen bond interactions with LYS29, CYS30, TYR34, ASN52, GLY55 and CYS28 amino acid residues. In addition, quercetin another compound from C. citratus exhibited significant binding energies -6.8 and -8.3 kcal/mol with PfCSP and PfEMP1, respectively but slightly lower than the standard artemether-lumefantrine with binding energies of -7.4 kcal/mol against PfCSP and -8.7 kcal/mol against PfEMP1. Overall, the present study provides evidence that swertiajaponin and other phytomolecules from C. citratus have modulatory properties toward P. falciparum drug targets and thus may warrant further exploration in early drug discovery efforts against malaria. Furthermore, these findings lend credence to the folkloric use of C. citratus for malaria treatment.Communicated by Ramaswamy H. Sarma.


Antimalarials , Cymbopogon , Malaria, Falciparum , Malaria , Antimalarials/chemistry , Cymbopogon/chemistry , Molecular Docking Simulation , Artemether/therapeutic use , Artemether, Lumefantrine Drug Combination/therapeutic use , Malaria/drug therapy , Malaria, Falciparum/drug therapy , Computer Simulation , Plant Extracts/pharmacology , Plant Extracts/chemistry
14.
Luminescence ; 39(1): e4616, 2024 Jan.
Article En | MEDLINE | ID: mdl-37953062

Cymbopogon citratus-mediated pure aluminium oxide (Al2 O3 ) and europium (Eu)-doped Al2 O3 with different amounts of metal ion were prepared using a green synthesis method. Synthesised nanoparticles were characterised by ultraviolet (UV)-visible spectroscopy, photoluminescence (PL), Fourier-transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM). Synthesis of nanoparticles is confirmed by using UV-visible spectroscopy showing maximum absorption at 411 and 345 nm for Al2 O3 and Eu-doped Al2 O3 , respectively. The antibacterial activity of prepared nanoparticles was evaluated against Pseudomonas aeruginosa, Streptococcus aureus, Escherichia coli and Klebsiella pneumoniae using a well-diffusion technique. The effect of pure Al2 O3 and Eu-doped nanoparticles shows excellent results against P. aeruginosa, S. aureus, E. coli and K. pneumoniae.


Cymbopogon , Metal Nanoparticles , Nanoparticles , Europium/chemistry , Escherichia coli , Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction , Metal Nanoparticles/chemistry , Microbial Sensitivity Tests
15.
Planta Med ; 90(4): 267-275, 2024 Apr.
Article En | MEDLINE | ID: mdl-38081308

Tyrosinase is a target enzyme to be inhibited in order to reduce excessive melanin production and prevent typical age-related skin disorders. Essential oils are complex mixtures of volatile compounds, belonging mainly to monoterpenoids and sesquiterpenoids, which have been relatively little studied as tyrosinase inhibitors. Among the monoterpenoids, citral (a mixture of neral and geranial) is a fragrance compound in several essential oils that has shown interesting tyrosinase inhibitory activity. Although citral is listed as an allergen among the 26 fragrances in Annex III of the Cosmetics Directive 2003/15/EC, it can be safely used for the formulation of topical products in amounts that are not expected to cause skin sensitization, as shown by various commercially available products.The aim of this work was to evaluate two different formulations (oil/water emulsion, oily solution) containing a new combination of essential oils (Litsea cubeba, Pinus mugo, Cymbopogon winterianus) applied to the skin both in nonocclusive and partially occlusive modes. The blend is designed to reduce the concentration of citral to avoid potential skin reactions while taking advantage of the inhibitory activity of citral. Specifically, the amount of citral and other bioactive compounds (myrcene, citronellal) delivered through the skin was studied as a function of formulation and mode of application.The results show that an oil/water emulsion is preferable because it releases the bioactive compounds rapidly and minimizes their evaporative loss. In addition, semi-occluded conditions are required to prevent evaporation, resulting in higher availability of the bioactive compounds in viable skin.


Acyclic Monoterpenes , Cymbopogon , Litsea , Oils, Volatile , Pinus , Oils, Volatile/pharmacology , Monophenol Monooxygenase , Emulsions , Monoterpenes/pharmacology
16.
Nat Prod Res ; 38(6): 1073-1079, 2024 Mar.
Article En | MEDLINE | ID: mdl-37144384

The cytotoxic effects of Cymbopogon schoenanthus L. aerial part ethanol extract were examined against some cancer cell lines, and HUVEC normal cell lines using MTT assay. The ethanolic extract was prepared by ultrasonic-assisted extraction and analyzed by GC-MS and HPLC. The extract was found to be rich in terpene compounds. The extract proved to be highly selective and effective against breast and prostate cancer cell lines (MDA-MB-435, MCF-7, and DU 145) with IC50 as low as 0.7913 ± 0.14, 12.841 ± 0.21, and 30.51 ± 0.18 µg/ml, respectively. In silico modeling was performed to investigate the binding orientation and affinity of the major identified compounds against Polo-like kinase (PLK1 protein) a cancer molecular target using molecular docking and molecular dynamic whereas eudesm-5-en-11-ol, piperitone, and 2,3-dihydrobenzofuran displayed better binding affinity and stability against PLK1 compared to the reference drug. These findings encourage further in vivo studies to assess the anti-cancer effects of C. schoenanthus extract and its components.


Cymbopogon , Molecular Docking Simulation , Cell Line , Ethanol , Phytochemicals , Plant Extracts/pharmacology
17.
Nat Prod Res ; 38(10): 1652-1661, 2024 May.
Article En | MEDLINE | ID: mdl-37226502

An experimental study has been conducted to investigate the efficacy of geraniol (GNL) isolated from lemomgrass in protecting against cardiac toxicity induced by tilmicosin (TIL) in albino mice. Compared to TIL-treated mice, those supplemented with GNL had a thicker left ventricular wall and a smaller ventricular cavity. Studies of TIL animals treated with GNL showed that their cardiomyocytes had markedly changed in diameter and volume, along with a reduction in numerical density. After TIL induction, animals showed a significant increase in the protein expression of TGF-ß1, TNF-α, nuclear factor kappa B (NF-kB), by 81.81, 73.75 and 66.67%, respectively, and hypertrophy marker proteins ANP, BNP, and calcineurin with respective percentages of 40, 33.34 and 42.34%. Interestingly, GNL significantly decreased the TGF-ß1, TNF-α, NF-kB, ANP, BNP, and calcineurin levels by 60.94, 65.13, 52.37, 49.73, 44.18 and 36.84%, respectively. As observed from histopathology and Masson's trichrome staining, supplementation with GNL could rescue TIL-induced cardiac hypertrophy. According to these results, GNL may protect the heart by reducing hypertrophy in mice and modulating biomarkers of fibrosis and apoptosis.


Acyclic Monoterpenes , Cymbopogon , Tylosin/analogs & derivatives , Mice , Animals , NF-kappa B/metabolism , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Calcineurin/metabolism , Calcineurin/pharmacology , Oxidative Stress , Myocytes, Cardiac , Cardiomegaly/metabolism , Cardiomegaly/pathology
18.
Inflammopharmacology ; 32(1): 509-521, 2024 Feb.
Article En | MEDLINE | ID: mdl-37541972

The topical application of essential oils is considered an effective treatment for skin diseases. Cymbopogon distans (Nees ex Steud.) Wats (Poaceae) is a promising aromatic grass widespread in the Himalayan temperate zone. Therefore, using in-vitro and in-vivo bioassays, we examined the chemical and pharmacological characteristics of essential oil hydro-distilled from C. distans coded as CDA-01, specifically concerning skin inflammation. Characterization using GC-FID and GC-MS provided a chemical fingerprint for CDA-01, enabling the identification of 54 compounds; amongst them, citral (34.3%), geranyl acetate (21.2%), and geraniol (16.4%) were the most abundant. To examine the anti-inflammatory potential, CDA-01 treatment on LPS-stimulated macrophage cells in addition to 12-O-tetradecanoylphorbol-13-acetate (TPA) generated cutaneous inflammatory reaction in the mouse ear was assessed through quantification of the inflammatory markers. Consequently, CDA-01 demonstrated protection against inflammation caused by LPS by lowering the pro-inflammatory cytokines (IL-6 and TNF-α) level in HaCaT cells with negligible cytotoxicity. Consistent with the in-vitro findings, CDA-01 treatment reduced pro-inflammatory mediators (TNF-, IL-6, and NO) and lipid peroxidation in an in-vivo investigation. Subcutaneous inflammation in TPA-treated mice ears was similarly decreased, as evidenced by the histological and morphological studies. As a result of our findings, it is possible that CDA-01 could be an effective treatment for skin inflammation disorders.


Cymbopogon , Dermatitis , Oils, Volatile , Animals , Mice , Monoterpenes/pharmacology , Interleukin-6 , Lipopolysaccharides , Inflammation/drug therapy , Oils, Volatile/pharmacology
19.
J Am Nutr Assoc ; 43(2): 183-200, 2024 Feb.
Article En | MEDLINE | ID: mdl-37579058

Lemongrass contains a variety of substances that are known to have antioxidant and disease-preventing properties, including essential oils, compounds, minerals, and vitamins. Lemongrass (Cymbopogon Spp.) essential oil (LGEO) has been demonstrated to ameliorate diabetes and accelerate wound healing. A member of the Poaceae family, Lemongrass, a fragrant plant, is cultivated for the extraction of essential oils including myrcene and a mixture of geranial and neral isomers of citral monoterpenes. Active constituents in lemongrass essential oil are myrcene, followed by limonene and citral along with geraniol, citronellol, geranyl acetate, neral, and nerol, which are beneficial to human health. A large part of lemongrass' expansion is driven by the plant's huge industrial potential in the food, cosmetics, and medicinal sectors. A great deal of experimental and modeling study was conducted on the extraction of essential oils. Using Google Scholar and PubMed databases, a systematic review of the literature covering the period from 1996 to 2022 was conducted, in accordance with the PRISMA declaration. There were articles on chemistry, biosynthesis, extraction techniques and worldwide demand of lemongrass oil. We compared the effectiveness of several methods of extracting lemongrass essential oil, including solvent extraction, supercritical CO2 extraction, steam distillation, hydrodistillation (HD), and microwave aided hydrodistillation (MAHD). Moreover, essential oils found in lemongrass and its bioactivities have a significant impact on human health. This manuscript demonstrates the different extraction techniques of lemongrass essential oil and its physiological benefits on diabetic wound healing, tissue repair and regeneration, as well as its immense contribution in ameliorating arthritis and joint pain.Key teaching pointsThe international market demand prediction and the pharmacological benefits of the Lemongrass essential oil have been thoroughly reported here.This article points out that different extraction techniques yield different percentages of citral and other secondary metabolites from lemon grass, for example, microwave assisted hydrodistillation and supercritical carbon dioxide extraction process yields more citral.This article highlights the concept and application of lemongrass oil in aromatherapy, joint-pain, and arthritis.Moreover, this manuscript includes a discussion about the effect of lemongrass oil on diabetic wound healing and tissue regeneration - that paves the way for further research.


Acyclic Monoterpenes , Alkenes , Arthritis , Cymbopogon , Diabetes Mellitus , Oils, Volatile , Plant Oils , Terpenes , Humans , Cymbopogon/chemistry , Oils, Volatile/pharmacology
20.
J Chem Inf Model ; 64(7): 2565-2576, 2024 Apr 08.
Article En | MEDLINE | ID: mdl-38148604

American Trypanosomiasis, also known as Chagas disease, is caused by the protozoan Trypanosoma cruzi and exhibits limited options for treatment. Natural products offer various structurally complex metabolites with biological activities, including those with anti-T. cruzi potential. The discovery and development of prototypes based on natural products frequently display multiple phases that could be facilitated by machine learning techniques to provide a fast and efficient method for selecting new hit candidates. Using Random Forest and k-Nearest Neighbors, two models were constructed to predict the biological activity of natural products from plants against intracellular amastigotes of T. cruzi. The diterpenoid andrographolide was identified from a virtual screening as a promising hit compound. Hereafter, it was isolated from Cymbopogon schoenanthus and chemically characterized by spectral data analysis. Andrographolide was evaluated against trypomastigote and amastigote forms of T. cruzi, showing IC50 values of 29.4 and 2.9 µM, respectively, while the standard drug benznidazole displayed IC50 values of 17.7 and 5.0 µM, respectively. Additionally, the isolated compound exhibited a reduced cytotoxicity (CC50 = 92.8 µM) against mammalian cells and afforded a selectivity index (SI) of 32, similar to that of benznidazole (SI = 39). From the in silico analyses, we can conclude that andrographolide fulfills many requirements implemented by DNDi to be a hit compound. Therefore, this work successfully obtained machine learning models capable of predicting the activity of compounds against intracellular forms of T. cruzi.


Biological Products , Chagas Disease , Cymbopogon , Diterpenes , Nitroimidazoles , Trypanosoma cruzi , Animals , Chagas Disease/drug therapy , Diterpenes/pharmacology , Diterpenes/metabolism , Biological Products/metabolism , Mammals
...